

Analyzing and measuring the joint costs of petroleum products and showing their impact on profits: Applied research in Aldora refinery

Imtithal R. Bachay*
College of administration and economics, University of Baghdad, Baghdad, Iraq

Article information:

Received: 05–10– 2024 Revised: 13–11– 2024 Accepted: 21–11– 2024 Published: 25–08– 2025

*Corresponding author: Imtithal R. Bachay

imtithal@coadec.uobaghdad.edu.iq

This work is licensed under a <u>Creative</u> <u>Commons Attribution 4.0</u> International License.

Abstract:

The research dealt with the topic of analyzing and measuring the joint costs of petroleum products and showing their impact on profits. The research problem was represented by not relying on modern scientific methods of cost accounting to determine and measure the joint costs of petroleum products, which leads to an increase in the costs of petroleum products and then a decrease in the overall profit. The research aimed to delve into the joint costs and methods of calculating them in the oil sector, and to analyze and measure the joint costs of petroleum products, in addition to stating the impact of the decrease in joint costs on the overall profit. The application was applied to the products of the Dora refinery, and the research reached a set of conclusions, the most important of which are There are four methods for allocating joint costs, but any method we use to allocate joint costs, the researcher believes that the best method is the total value of sales at the point of separation because it is easy to implement as well as it is the best measure of the benefits achieved when compared with other methods of allocating joint costs.

Introduction and importance of Research:

Cost is defined as a sacrifice of the resources of the economic unit in exchange for obtaining a specific purpose (good or service) and since the main objective of cost accounting is to determine the costs of the product in order to be able to price and sell it at a suitable profit, so the importance of research lies in focusing on the costs of the oil sector products and calculating the common costs of those products According to the scientific methods of cost accounting with the aim of accurately determining the cost of those products, reducing them, and then increasing the total profit to achieve the goals of the economic unit efficiently.

Keywords: Cost, joint costs, gross profit, profitability analysis.

Research methodology Research problem:

The research problem was represented by not relying on modern scientific methods of cost accounting to determine and measure the joint costs of petroleum products, which leads to an increase in the costs of petroleum products and then a decrease in the overall profit.

Research objective:

The research aimed to delve into the joint costs and methods of calculating them in the oil sector, and to analyze and measure the joint costs of petroleum products, in addition to stating the impact of the decrease in joint costs on the overall profit.

Importance of research:

The importance of the research lies in the fact that it is a method for calculating the costs of petroleum products in the presence of joint costs, using the scientific method to calculate those costs, arriving at a statement of the total profit, in addition to stating the best method that achieves the highest profits.

2025, VOL. 06, NO. 03, 57-68, E-ISSN: 2709-4251, P-ISSN: 2708-8790

DOI: https://doi.org/10.56967/ejfb2025532

Hypothesis:

The research is based on the hypothesis that "the correct and accurate determination of the joint costs by relying on modern scientific methods of cost accounting strengthens control over the cost of oil products and their pricing, and then reflects the true profitability of those products."

Theoretical approach:

Addressing the concept of cost and its objectives, identifying common costs and methods of calculating them in the oil sector, identifying, analyzing and measuring the joint costs of petroleum products, and stating the effect of the value of joint costs on the total profit.

Data and methodology:

The researcher applied modern scientific methods to calculate the joint costs of petroleum products in the Doura refinery and indicate their impact on the overall profit in the oil sector.

Estimation and analysis:

The researcher used mathematical methods to calculate the cost of petroleum products, including joint costs, as well as preparing an income statement to determine the total profit.

Results and discussion:

The researcher indicated that the allocation and measurement of the value of joint costs affects the value of profitability in the oil sector and explained the effect of the decrease in joint costs on the total profit.

Theoretical framework:

Important concepts for identifying and measuring joint costs

Joint cost

They are the costs that occur before the point of separation, or the costs of the production stage, resulting in multiple products at once.

Separable Costs

It is the additional costs that occur after the point of separation to purify the product and sell it at a price higher than its price in its condition at the point of separation.

Split-off Point

It is the point at which the raw material separates into more than one product.

Why allocate shared costs and how to allocate them:

Shared costs are allocated to determine the storable costs and the cost of goods sold and for the purposes of preparing the internal report and analyzing the profitability of the departments and the performance of the managers of those departments. There are two entries for allocating shared costs, the first one - using specific market-based data such as revenues, and the second is the allocation of joint costs using a physical measurement such as weight, volume, or cubic foot.

(Professor H uddart, 2009, p2)

Common cost allocation methods of joint

1. physical –measure method

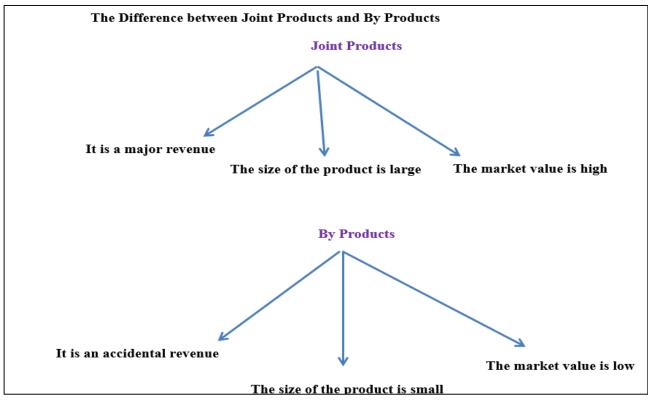
The physical measurement allocates the joint costs of joint products on the basis of the relative weight of volume or other physical measures at the point of separation of the total output of those products.

2. Sales value at Split off method

The Sales Value on Separation method allocates joint costs to joint products on the basis of the total relative sales value at the point of separation resulting from the total output of those products.

3. Net Realizable value (NPV) method

The net realizable value method allocates joint costs of joint products on the basis of the relative net realizable value - final sales value minus the post-separation costs of total output from joint products.


4. Net realizable value method on a fixed gross margin ratio

The realizable value net method allocates the gross margin ratio on the joint costs by the method that makes the gross margin ratio completely similar to the individual products. This method relies on three basic steps: 1) calculating the total gross margin ratio for all the joint products together 2) the margin ratio is multiplied The total in the final sales values for each product to calculate the gross margin for each product, and the gross margin for each of the final sales value for each product is subtracted to obtain the costs that will be charged for each product, 3) costs after

separation are subtracted from the total costs that will be charged for each product. We

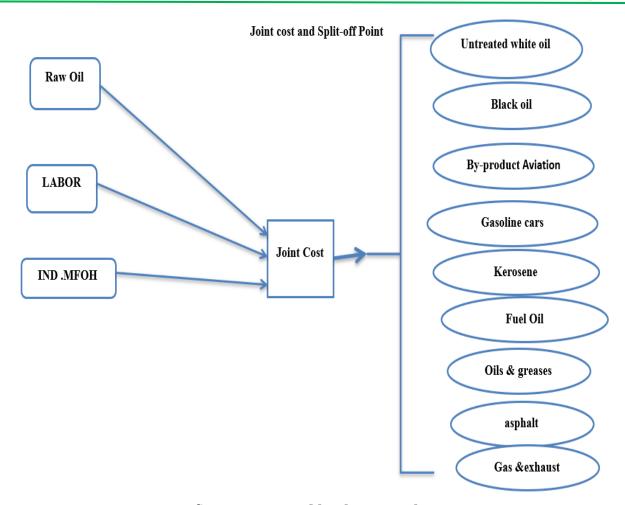
obtain an allocation of joint costs. (Horngren, 2012, p578-579)

Shapes prepared by the researcher

Therefore, the cost accountant in the transitional industries faces difficulties in determining the costs of joint and incidental products. Therefore, it is necessary in this case to follow scientific methods for allocating and extracting the cost of each product separately for the purposes of pricing and preparing financial statements, including income statement.

Since oil is an important resource in the present and future of Iraq, as well as a source of economic development, the costs of petroleum products should be determined accurately and according to an appropriate scientific method, so the main characteristics of the oil industries must be known:

- The oil industry is characterized by its complex processes that require technological development and technology.
- Depends on a small number of people, but they are highly skilled and experienced.
- The high age of the oil field.


- There is a correlation between the various stages of the industry during production.
- The risk is high.
- It requires large capital.
- The high cost of investment in scientific research.

As for the stages of the oil industry, they are as follows:

- The reconnaissance and exploration phase
- The drilling and development stage
- The stage of production and pressure of oil and gas. (Dr. Abdel Khaleq,2011p41-42)

The application of these methods depends on the strength of the internal control system and its information, which must be of high quality in order to reach an accurate cost analysis. (Thijeel, et al,2019, p 569), And he sees the al ghabban Increasing profits by increasing sales revenue, whether by increasing sales volume or selling price, is not easy to achieve in the presence of intense competition (Al ghabban, at al ,2007,p199).

Source: prepared by the researcher

Practical framework:

The research was applied to the Al-Dawra Refinery is considered one of the oldest large refineries in Iraq and represents the real beginning of the revival of the modern oil industry. The factory is located southeast of Baghdad. Construction of the refinery began in 1953 with the contribution of a group of international companies and began operating in 1955. On petroleum products and the information was taken from the production department for the year 2022 due to its availability, thee information on petroleum products is as shown in Table 1.

JOINT PRODUCTS (1)

ITEM	Quantity	Density	Density-adjusted	Quantities sold	selling price
	M^3	degree rate	quantities M ³	M^3	
Untreated white oil	535872	48	25721856	24435763	567.37
Black oil	2767244	15.2	42062109	41220867	550.00
Gasoline cars	976540	80.6	78709124	75560759	561.46
Kerosene	279951	60	16797060	15789236	573.40
Fuel Oil	931272	38.8	36133354	35410687	550.00
Oils & greases	85788	32.1	2753795	2616105	567.37
asphalt	622193	15.3	9519553	8948380	573.40
Gas &exhaust	15877	122.3	1941757	1941757	507.08

Source: Prepared by the researcher based on the data of Dura refinery.

After knowing the joint products, we apply the methods of calculating joint costs: Firstly physical -measure method:

Physical –measure method (2)

ITEM	Density-adjusted quantities	(Relative	physical -measure method
		weight)	(JOINT COST)
Untreated white oil	25721856	0.1204	10270187302
Black oil	42062109	0.1969	16794501057
Gasoline cars	78709124	0.3684	31426870825
Kerosene	16797060	0.0786	6706707025
Fuel Oil	36133354	0.1691	14427275911
Oils & greases	2753795	0.0129	1099531482
asphalt	9519553	0.0446	3800954035
Gas &exhaust	1941757	0.0091	775302066
Total	213638608	100%	85301329702

Source: Prepared by the researcher based on the data of Dura refinery

It is evident from the foregoing that the joint costs amounted to 85301329702

Dinar, and that this method relied on the r elative weight of the quantity, i.e., its physical measurement, in the distribution of joint cost, and here the cost per unit is fixed for all joint

products 85301329702 /213638608=399.279 per unit, this calculation is imprecise and affects the overall profitability of those products. This can be clarified in the income statement as follows:

Income statement by physical measurement method (3)

Income	Income statement by physical measurement method (3)							
item	Untreate d white oil	Black oil	Gasoline cars	Kerose ne	Fuel Oil	Oils & greases	asphalt	Gas &exha ust
Sales revenue	1386411 8853	22671476 850	4242434 3748	905354 7922	19475877 850	148429 9494	513100109	984626 140
Cost of good cold								
Joint	1027018	16794501	31426870	67067	14427275	109953	380095403	775302
cost	7302	057	825	07025	911	1482	5	066
+B(INV)	0	0	0	0	0	0	0	0
-E(INV)	(513509 445)	(33589026 5)	(1257076 029)	(40240 2959)	(2885457 57)	(54976 725.5)	(22805738	0
Cost of	9756677	16458610	30169794	63043	14138730	104455	357289665	775302
goods Sold	857	792	796	04066	154	4757	1	066
Gross	4107440	62128660	12254548	27492	53371476	439744	155810444	209324
profit	996	58	952	43856	96	737	1	074

Source: Prepared by the researcher based on the data of Dura refinery

The income statement revealed that the profit was approximate due to the unit cost of the ending inventory; the period was fixed for all products because it is the method of physical measurement in addition to the cost of joint costs. It was a single cost for all

products; whose value was 399 dinars per unit, the period was fixed for all products because it is the method of physical measurement in addition to the cost of joint costs. It was a single cost for all products, whose value was 399.279 dinars per unit.

Value ending inventory using physical measurement method (4)

Unit cost (E.INV)	Quantities (E.INV)	Value(EINV)
399.279	1286093	513509445
399.279	841242	335890265

399.279	3148365	1257076029
399.279	1007824	402402959
399.279	722667	288545757
399.279	137690	54976725.5
399.279	571173	228057384
399.279	0	0

Secondly Total sales value

The joint costs amounted to 85301329702 Dinar

Total sales value method (5)

ITEM	Density- adjusted quantities	selling price (2)	Total sales value (3)	Cost per quantities M ³ (4) = joint costs /	Total sales value method JOINT COST
	$M^{3}(1)$, ,	Total sales value	(5) = (4) * (1)
Untreated white oil	25721856	567.37	14593809439	0.7142	10422898701
Black oil	42062109	550.00	23134159950	0.7142	16522417036
Gasoline cars	78709124	561.46	44192024761	0.7142	31561944084
Kerosene	16797060	573.40	9631434204	0.7142	6878770308
Fuel Oil	36133354	550.00	19873344700	0.7142	14193542785
Oils & greases	2753795	567.37	1562420669	0.7142	1115880842
asphalt	9519553	573.40	5458511690	0.7142	3898469049
Gas &exhaust	1941757	507.08	984626140	0.7142	703219989

It is clear to us that the total sales value method allocated the joint costs on the basis of the total joint costs, dividing the total sales division and extracting the unit cost and through it we determined the share of the joint costs for each product by multiplying the unit cost by the quantity of each product.

Income statement by Total sales value method (6)

• ,	TT 4 1	DI I	C P	TZ	T 1	0.1 0	1 14	
item	Untreated	Black	Gasolin	Kerosen	Fuel	Oils &	asphalt	Gas
	white oil	oil	e cars	e	Oil	greases		&exhaust
Sales	138641188	226714	4242434	9053547	194758	1484299	513100	98462614
revenue	53	76850	3748	922	77850	494	1092	0
Cost of								
good								
cold								
Joint	104228987	165224	315619	68787703	14193	11158808	389846	70321998
cost	01	17036	44084	08	54278	42	9049	9
					5			
Separab	102702800	167941	314267	67063905	14427	10995341	380102	775389
le Costs		257	158	4	0138		72	
+B(INV)	0	0	0	0	0	0	0	0
-E(INV)	(52628015	(333807	(12750	(45296474	(2867	(56343911	(23618	0
	7)	094)	48466)	2)	56227)	8685)	
)			
Cost of	999932134	163565	306011	70964446	14051	10705322	370029	70399537
goods	4	51199	62776	21	05669	72	0636	8
sold					6			
Gross	386479750	631492	118231	19571033	54248	41376722	143071	28063076
profit	9	5651	80972	01	21154	2	0456	2

Source: Prepared by the researcher based on the data of Dura refinery.

It is clear to us from this method that it depends on the total sales value to extract the joint costs, and for the purpose of extracting the net income, we extract the cost of goods sold that is equal to the joint costs plus the additional costs and we subtract from it the stock of the last period

Value ending inventory using Total sales value method (7)

Unit cost (E.INV)	Quantities (E.INV)	Value (EINV)
409.208	1286093	526280157
396.803	841242	333807094
404.987	3148365	1275048466
449.448	1007824	452964742
396.803	722667	286756227
409.208	137690	56343911
413.515	571173	236188685
362.556	0	0

Third Net Realizable value (NPV) method Net Realizable value (NPV) method (8)

ITEM	Sales value	Separable	Net Sales value
	(Quantities product M ³ x selling price)	Costs	
Untreated white oil	14593768825	102702800	14491066025
Black oil	23134159950	167941257	22966218693
Gasoline cars	44191893579	314267158	43877626421
Kerosene	9631505681	670639054	8960866627
Fuel Oil	19873344700	144270138	19729074562
Oils & greases	1562416321	10995341	1551420980
asphalt	5458552199	38010272	5420541927
Gas &exhaust	984633624	775389	983858235

Source: Prepared by the researcher based on the data of Dura refinery.

It is clear to us that this method depends on the sales value and reduces the additional costs of extracting the net sales value after the point of separation for the purpose of distributing the joint costs on the basis of the total net sales value of each product, as follows. Economic unit data showed that the allocation joint costs amounted to (joint costs 85301329702- sales revenue Aviation fuel (By Products) 6824106376) =78477223326 Dinar, we will calculate the share of each product in the joint costs by dividing the share of each product by the total net sales value.

For every product Joint Cost (9)

ITEM	JOINT COST	Net Sales value	ratio net	JOINT COST
	(1)	For every	sales value	For every product (4)
		product (2)	(3)	$(4) = (1) * {(3)}$
Untreated white oil	78477223326	14491066025	0.122825761	9639024691
Black oil	78477223326	22966218693	0.194660854	15276443339
Gasoline cars	78477223326	43877626421	0.371905204	29186087741
Kerosene	78477223326	8960866627	0.075951987	5960501079
Fuel Oil	78477223326	19729074562	0.167222936	13123191662
Oils & greases	78477223326	1551420980	0.013149789	1031958940
asphalt	78477223326	5420541927	0.045944321	3605582735
Gas &exhaust	78477223326	983858235	0.008339147	654433139
	78477223326			

Source: Prepared by the researcher based on the data of Dura refinery.

Income statement by net Realizable value- NPV- method (10)

item	Untreate	Black oil	Gasoline	Kerose	Fuel	Oils &	asphalt	Gas
Ittili		Diack on					аѕрпан	
	d white		cars	ne	Oil	grease		&exhau
	oil					S		st
Sales	13864118	22671476	42424343	905354	194758	148429	5131001	9846261
revenue	853	850	748	7922	77850	9494	092	40
Cost of								
good								
cold								
Joint	96390246	15276443	29186087	596050	131231	103195	3605582	6544331
cost	91	339	741	1079	91662	8940	735	39
Separabl	10270280	16794125	31426715	670639	144270	109953	3801027	775389
e Costs	0	7	8	054	138	41	2	
+B(INV)	0	0	0	0	0	0	0	0
-E(INV)	(4870863	(3088876	(1180014	(397868	(265349	(52147	(2186155	0
	75)	92)	196)	408)	236)	714)	80)	
Cost of	97417274	15444384	29500354	663114	132674	104295	3643593	6552085
goods	91	596	899	0133	61800	4281	007	28
sold								
Gross	41223913	72270922	12923988	242240	620841	441345	1487408	3294176
profit	62	54	849	7789	6050	213	085	12

Source: Prepared by the researcher based on the data of Dura refinery.

It is clear to us from the results of the income statement that the total profit increased according to this method because the unit cost changed and was not fixed, in addition to the cost of the stock at the end of the period. It was variable for all products and was not fixed, which affected the total profit and thus the profit rate, knowing that the unit

cost was calculated by adding, the joint costs of each product with the additional costs and divided by the amount of production after that multiplied by the quantity of stock at the end of the period and here the joint costs reduced by the sales value of the incidental product jet fuel.

Value ending inventory using net Realizable value (11)

Unit cost (E.INV)	Quantities (E.INV)	Value (EINV)
378.733	1286093	487086375
367.180	841242	308887692
374.802	3148365	1180014196
394.780	1007824	397868408
367.180	722667	265349236
378.733	137690	52147714
382.748	571173	218615580
337.431	0	0

Fourthly Net realizable value method on a fixed gross margin ratio

Joint Cost using Net realizable value method on a fixed gross margin ratio (12)

item	Untreat	Black oil	Gasoline	Kerose	Fuel	Oils &	asphalt	Gas
	ed		cars	ne	Oil	grease		&exhaust
	white					S		
	oil							
Sales	145937	2313415	4419189	963150	198733	15624	5458552	9846336
revenue	68825	9950	3579	5681	44700	16321	199	24
(quantities								
product								
M3 x								
selling								
price)								
fixed	394031	6246223	1193181	260050	536580	42185	1473809	2658510
gross	7583	187	1266	6534	3069	2407	094	78
margin								
ratio 27%								
Separable	102702	1679412	3142671	670639	144270	10995	3801027	775389
Costs	800	57	58	054	138	341	2	
allocated	383761	6078281	1161754	192986	522153	41085	1435798	2650756
Joint Cost	4783	930	4108	7480	2931	7066	822	89

Source: Prepared by the researcher based on the data of Dura refinery.

The gross profit margin method uses the percentage of gross margin that is extracted from (the quantity of production multiplied by the selling price) minus (the joint costs plus the additional costs), and then we extract the result net profit on the total sales value of the

production, and here it is 27%, Accordingly, the joint costs were allocated through the sales value minus the amount of the 27% of the sales value, and then the additional costs were subtracted from them.

Income statement by Net realizable value method on a fixed gross margin ratio (13)

				TZ				
item	Untreated	Black oil	Gasoli	Kerosen	Fuel	Oils &	asphalt	Gas
	white oil		ne cars	e	Oil	greases		&exhaust
Sales	13864118	22671476	424243	9053547	194758	148429	513100	98462614
revenue	853	850	43748	922	77850	9494	1092	0
Cost of								
good cold								
Joint cost	38376147	60782819	116175	1929867	522153	410857	143579	26507568
	83	30	44108	480	2931	066	8822	9
Separabl	10270280	16794125	314267	6706390	144270	109953	380102	775389
e Costs	0	7	158	54	138	41	72	
Producti	39403175	39403175	394031	3940317	394031	394031	394031	39403175
on costs	83	83	7583	583	7583	7583	7583	83
available								
for sale								
-E(INV)	(19701587	(12492446	(47727	(156030	(10731	(21092	(88428	0
	9)	4)	2451)	392)	6061)	620)	546)	
Cost of	37433017	61212987	114545	2444476	525848	400759	138538	26585107
goods	04	23	38816	142	7008	786	0548	8
sold								
Gross	10120817	16550178	309698	6609072	142173	108353	374562	71877506
profit	263	028	04955	010	90798	9849	0441	1

2025, VOL. 06, NO. 03, 57-68, E-ISSN: 2709-4251, P-ISSN: 2708-8790

It is evident from the method of gross fixed margin percentage that it was fixed for all products at a rate of 27% according to which the joint costs were allocated. In addition to

that, the inventory of the last period whose cost was calculated on the basis of the cost of production available for sale divided the units produced

Value ending inventory using Net realizable value method on a fixed gross margin ratio (14)

Unit cost (E.INV)	Quantities (E.INV)	Value (EINV)
153.189	1286093	197015879
148.500	841242	124924464
151.594	3148365	477272451
154.819	1007824	156030392
148.500	722667	107316061
153.189	137690	21092620
154.819	571173	88428546
136.913	0	0

The ratio of total profitability to allocation of shared joint costs (15)

The ratio of total profitability to anocation of shared joint costs (15)						
allocation methods	Percentage of gross profit	Classification according				
		to profitability				
physical measurement method	29 %	The second				
Total sales value method	27 %	The third				
net Realizable value- NPV- method	31 %	The First				
Net realizable value method on a fixed	27 %	The third				
gross margin ratio						

It is evident that the highest profitability was for the net realizable net sales value method, where profitability reached 31%, followed by the physical measurement method with a percentage 29 %, As for the total sales value and the gross fixed margin ratio, they were less profitable and reached a percentage 27%.

How to account for the by-product and this is done through two methods, the first is the production method and the second is the sales method, and the main product is black oil and the by-product Aviation fuel, The cost of the and the conversion materials cost 24870033795 dinars. and sales 6824106376 dinars, 8000,000 Quantities sold, selling price 853.01, Quantities product 7000,000.

Therefore, the total profit margin can be extracted according to the two methods as follows

Accounting for the main and byproduct (16)

Item	Sales method	Production method
Sales revenue		
main product (Black oil)	22671476850	22671476850
by-product (Aviation fuel)	+6824106376	-
Total Sales revenue	29495583226	22671476850
Main production cost (Black oil)	25037975052	25037975052
sales value of the by-product	-	(6824106376)
(Aviation fuel)		
Total manufacturing costs	25037975052	18213868676
E(INV) Main production	(607410200)	(441860397)
Cost of production sold	24430564852	17772008279
Gross profit margin	5065018374	4899468571
Percentage of gross profit	!7%	22%
Note E(INV) Aviation fuel	0	853013297

It becomes clear to us that the gross profit margin percentage was 17% in the Sales method and reached 22% in the production method, as for the ending inventory, it was multiplying (1000000+calculated by 41220867) x Total manufacturing costs for each method, Total manufacturing costs are calculated by adding the material cost, and conversion cost additional costs 24870033795 Plus 167941257 Equal 25037975052.

Conclusions:

- 1. There are four methods for allocating joint costs, but any method we use to allocate joint costs, the researcher believes that the best method is the total value of sales at the point of separation because it is easy to implement as well as it is the best measure of the benefits achieved when compared with other methods of allocating joint costs.
- 2. The method of physical measurement is not preferred because it does not depend on a clear and purposeful basis that is appropriate for the perceived benefits.
- 3. When selling prices at the point of separation are not available, the net realizable net sales value method can be used, but it is complex to apply and assumes that all profit can be attributed to the joint operation and not to the costs of separation.
- 4. All products are considered a single product. Gross profit margin method is fixed and thus easy to apply. Therefore, the profit margin ratio is equal and fixed for all products.
- 5. Accounting for by-products the method of recognition at production this method is impractical because the production will not be sold. The method of recognition on sale is a process that represents the real reality.
- 6. The allocation and measurement of the value of joint costs affects the profitability value in the oil sector as well as the cost of inventory at the end of the period.

Data Availability:

The data used to support the results of this study has been included in the article.

Conflict of Interest:

The authors declare that they have no conflicts of interest.

Funding Sources:

No financial support was received.

Acknowledgments:

None.

References:

- 1. Abdul, Khaleq Mutlaq, "Oil and gas accounting", Al-Barouzi Scientific Publishing and Distribution, Jordan Amman, House, 2011.
- **2.** Abu Nassar, Muhammad, "Cost Accounting", Jordan Amman, House 2008.
- 3. Abass, Z. K., Al-Abedi, T. K., & Flayyih, H. H Integration between cobit and coso for internal control and its reflection on auditing risk with corporate governance as the mediating variable. International Journal of Economics and Finance Studies, 15(2), 2023.
- **4.** Al-Ogaili, Abbas Fadhil. "Nature of the Economic Units Investment Activity and Its Reflection on the Accounting System: A Comparative Analytical Study." Nature 14.7, 2020.
- 5. Al ghabban Hhir sabri & Sana Ahmed Yassin" Disclosure of investment in human resources in the financial reports of Iraqi economic units" Journal of Economics and Administrative Sciences, 2007vol, 13, no, 45.
- **6.** DR.P. Periasamy," A Text book financial Accounting & Cost Accounting ", Erode A College Himalaya Publishing House, 2010.
- 7. DR. Sabiha Barzan& Rosul Estabraq "
 The Reflection of the application TDABC approach on profit persistence applied study in the general state of hydraulic industries factory of plastic"
 Journal of Economics and Administrative Sciences, 2019; vol,25, no,116.

- **8.** Edward J, Vanderbck," Cost Accounting",", 15th ed., Hall 2010.
- **9.** Garrison, Noreen Brewer, "Managerial Accounting" 14th ed., Irwin Mc Graw Hill Co.2012.
- **10.** Hilton, Ronald w., "Managerial Accounting", 9th ed., Irwin Mc Graw Hill Co.2011.
- **11.** Horngren Charles, I. & Datar, Srikant, M. & Foster, George "Cost Accounting a Managerial Emphasis" 14th ed, Person, Prentice-Hall 2012.
- 12. Hamdan, K. H., Bachay, I. R., Flayyih, H. H., & Talab, H. R. Using Capital Budget and Sensitivity Analysis to Predict Future Cash Flows and Evaluate Investment Projects: Empirical Study at Iraqi Company for Production, Marketing and Meat and Field Crops. Journal of Engineering and Applied Sciences, 2018.
- 13. Hanan shbait Abdullah, Haider Musa Falih, "Integrate balanced scorecard and technology TD ABC to achieve competitive advantage" Journal of Economics and Administrative Sciences, 2018; vol, 105, no, 24.
- 14. Intisar Ahmed Obaid, "The effect of accounting for human resources in reducing costs", Journal of Economics and Administrative Sciences, 2018; vol,103, no,24.
- 15. Mohammedc, H. H. F. The Role of Balanced Scorecard in the Integration of Management Control System and the Strategy of Economic Unity. International Journal of Innovation, Creativity and Change. Www. ijicc. Net, 13, 2020.
- **16.** Professor Steven Huddart," Managerial Accounting" Smeal College of Business, 2009.
- 17. Thijeel, A. M., & Bachay, I. R. Sample for the inner control on the quality in accordance with standard. Opción: Revista de Ciencias Humanas y Sociales, (20), 2019.